Diagnosis of glaucoma by indirect classifiers.

نویسندگان

  • A Peters
  • B Lausen
  • G Michelson
  • O Gefeller
چکیده

OBJECTIVES Demonstration of the applicability of a framework called indirect classification to the example of glaucoma classification. Indirect classification combines medical a priori knowledge and statistical classification methods. The method is compared to direct classification approaches with respect to the estimated misclassification error. METHODS Indirect classification is applied using classification trees and the diagnosis of glaucoma. Misclassification errors are reduced by bootstrap aggregation. As direct classification methods linear discriminant analysis, classification trees and bootstrap aggregated classification trees are utilized in the problem of glaucoma diagnosis. Misclassification rates are estimated via 10-fold cross-validation. RESULTS Indirect classification techniques reduce the misclassification error in the context of glaucoma classification compared to direct classification methods. CONCLUSIONS Embedding a priori knowledge into statistical classification techniques can improve misclassification results. Indirect classification offers a framework to realize this combination.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optical coherence tomography machine learning classifiers for glaucoma detection: a preliminary study.

PURPOSE Machine-learning classifiers are trained computerized systems with the ability to detect the relationship between multiple input parameters and a diagnosis. The present study investigated whether the use of machine-learning classifiers improves optical coherence tomography (OCT) glaucoma detection. METHODS Forty-seven patients with glaucoma (47 eyes) and 42 healthy subjects (42 eyes) ...

متن کامل

Feature selection using genetic algorithm for breast cancer diagnosis: experiment on three different datasets

Objective(s): This study addresses feature selection for breast cancer diagnosis. The present process uses a wrapper approach using GA-based on feature selection and PS-classifier. The results of experiment show that the proposed model is comparable to the other models on Wisconsin breast cancer datasets. Materials and Methods: To evaluate effectiveness of proposed feature selection method, we ...

متن کامل

Development and comparison of automated classifiers for glaucoma diagnosis using Stratus optical coherence tomography.

PURPOSE To develop and compare the ability of several automated classifiers to differentiate between normal and glaucomatous eyes based on the quantitative assessment of summary data reports from Stratus optical coherence tomography (OCT; Carl Zeiss Meditec Inc., Dublin, CA) in a Chinese population in Taiwan. METHODS One randomly selected eye from each of 89 patients with glaucoma and each of...

متن کامل

Glaucoma Diagnostic Accuracy of Machine Learning Classifiers Using Retinal Nerve Fiber Layer and Optic Nerve Data from SD-OCT

Purpose. To investigate the diagnostic accuracy of machine learning classifiers (MLCs) using retinal nerve fiber layer (RNFL) and optic nerve (ON) parameters obtained with spectral domain optical coherence tomography (SD-OCT). Methods. Fifty-seven patients with early to moderate primary open angle glaucoma and 46 healthy patients were recruited. All 103 patients underwent a complete ophthalmolo...

متن کامل

Fault Detection of Bearings Using a Rule-based Classifier Ensemble and Genetic Algorithm

This paper proposes a reduct construction method based on discernibility matrix simplification. The method works with genetic algorithm. To identify potential problems and prevent complete failure of bearings, a new method based on rule-based classifier ensemble is presented. Genetic algorithm is used for feature reduction. The generated rules of the reducts are used to build the candidate base...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Methods of information in medicine

دوره 42 1  شماره 

صفحات  -

تاریخ انتشار 2003